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Abstract—Ridge regression (RR) and its extended versions are
widely used as an effective feature extraction method in pattern
recognition. However, the RR-based methods are sensitive to the
variations of data and can learn only limited number of pro-
jections for feature extraction and recognition. To address these
problems, we propose a new method called robust discriminant
regression (RDR) for feature extraction. In order to enhance
the robustness, the L2,1-norm is used as the basic metric in the
proposed RDR. The designed robust objective function in regres-
sion form can be solved by an iterative algorithm containing an
eigenfunction, through which the optimal orthogonal projections
of RDR can be obtained by eigen decomposition. The conver-
gence analysis and computational complexity are presented. In
addition, we also explore the intrinsic connections and differ-
ences between the RDR and some previous methods. Experiments
on some well-known databases show that RDR is superior to
the classical and very recent proposed methods reported in the
literature, no matter the L2-norm or the L2,1-norm-based regres-
sion methods. The code of this paper can be downloaded from
http://www.scholat.com/laizhihui.
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I. INTRODUCTION

LEAST square regression is one of the most simple and
effective methods for feature extraction and dimension-

ality reduction. The classical least square regression method,
i.e., ridge regression (RR) [1], has the potential drawbacks,
including the sensitivity to the data’s variations, and obtain-
ing only limited number of projections, which is equal to the
number of classes in the training data. Based on the minimum
mean squared error, many regression methods were proposed
and modified to different applications [2]–[7]. The develop-
ments of the regression methods can be generally divided into
three categories: 1) sparse regression extension; 2) subspace
regression; and 3) robust regression. Each of them represents
one development route of the regression methods.

On the first development route, the basic regression, i.e.,
RR, has been developed to be different sparse regular-
ized regression methods. The representative methods include
lasso regression [8], least angle regression [9], and elastic net
regression [10]. These regression methods focus on the vari-
able selection or feature selection. Since the focus of this paper
is not on the sparse variable selection, the readers are referred
to [8]–[10] for more details.

The second development route of the least square regression
is the generalized variations, i.e., subspace regression methods.
In the past decades, it was shown that many linear dimen-
sionality reduction methods could be reformulated by least
square regression techniques. For example, principle compo-
nent analysis (PCA) [11]–[13] can be rewritten as regression
form and developed to be a sparse PCA [14]. Ye [15] rep-
resented the linear discriminant analysis (LDA) [16]–[18] to
a least square LDA. Recently, De la Torre [19] reformulated
many component analysis methods into a unified least squares
framework and Zheng et al. [20] extended the regulariza-
tion method for cross-modal hashing. A common property of
these subspace regression methods is that the label indicator
matrix usually is not directly used in the regression proce-
dures, which is different from the classical RR. However,
since these methods used the L2-norm or Frobenius norm
as the metric, they are sensitive to the outliers or the data’s
variations [21]–[23].

The last development route of the regression methods is the
robust extensions of the least square regression, which is the
main focus of this paper. In recent years, the robust regres-
sion methods have been paid great attention. The robust least
square regression methods mainly introduce the L2,1-norm as
the basic metric in the regression. Nie et al. [21] proposed
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an efficient iterative algorithm to solve the L2,1-norm regres-
sion problem, which is called robust feature selection (RFS).
It was shown that this regression model is more robust
in pattern recognition [24] than the sparse representation
classifier [25]. Based on this fast method proposed in [21],
many robust regression methods based on L2,1-norm were
proposed for subspace learning [22], [23], [26]–[29]. Since
the L2,1-norm regularized regression can derive jointly sparse
solutions, it is usually used as a regularizer. Therefore,
Gu et al. [27] proposed the joint feature selection and subspace
learning (FSSL) method based on the locality preserving pro-
jections (LPP) [30]. In addition, L2,1-norm was widely used
in shared subspace learning [28] for face recognition [31] and
some other application [22], [23], [29]. These studies indicate
that the L2,1-norm-based regression methods are more robust
than the L2-norm or Frobenius norm-based regressions on
subspace learning.

As the RR uses the label indicator matrix in regres-
sion, it can obtain only C projections, where C denotes
the number of the classes. However, since the subspace
regression methods do not use the label indicator matrix,
they usually can obtain more projection than the classical
ridge regression. The drawback in ridge regression and sub-
space regression methods is that they use the L2-norm or
Frobenius as the distance metric, which is sensitive to the
outliers and data’s variations [21]–[23]. Despite of the robust-
ness indicated in the L2,1-norm, the problems in the robust
regression methods, replacing the L2-norm by the L2,1-norm
in ridge regression and its variations such as those meth-
ods in [22], [23], [28], and [29], is that only limited number
of projections can be obtained due to the usages of the
label indicator matrix. Particularly, when C is small, the
performance of the existing robust regression methods will
be degraded.

Robustness is critical in computer vision and pattern recog-
nition. Obtaining the robust features is significant in recogni-
tion task. In this paper, we take the advantages of the methods
in the second and third categories (i.e., subspace regression and
robust regression, respectively) to develop a novel framework
so as to deal with the robustness in regression learning. The
main contributions of this paper are as follows.

1) We propose a novel regression learning method, i.e.,
robust discriminant regression (RDR), for discriminant
subspace learning. Based on the L2,1-norm as the robust
metric, an iterative method is proposed to solve the
regression learning problem.

2) The convergence and computational complexity analyses
are presented. The theoretical similarity and differ-
ences between RDR and the classical methods are also
explored.

3) Extensive experiments show that the proposed RDR per-
forms better than the related methods for robust image
feature extraction.

The rest of this paper is organized as follows. Section II
summarizes the previous regression methods. In Section II,
RDR is proposed for feature extraction. In Section III, the-
oretical analyses are presented to explore properties of the
RDR algorithm and its relationship to other algorithms.

In Section IV, experiments on evaluating the proposed method
are reported. We give the conclusions in Section V.

II. BACKGROUND AND MOTIVATIONS

In this section, we first give the notations used in this
paper and the definition of L2,1-norm, and then the summarize
the previous regression methods. At last we present potential
problem of the existing regression methods which motivates
the proposed RDR algorithm.

A. Notation and Definition

Let matrix X = [x1, x2, . . . , xN]T be the data matrix includ-
ing all the training samples {xi}N

i=1 ∈ Rm in its rows. Let
{yi}N

i=1 ∈ RC denote the label of the training data, where C
denotes the number of classes in training set.

Since the feature dimension m is often very high, we need
to find a projection matrix Q = (q1, q2, . . . , qd) ∈ Rm×d to
map the sample x ∈ Rm into x̃ ∈ Rd (d << m) by using

x̃ = xQ ∈ Rd. (1)

In this paper, we need the definition of L2,1-norm for clarity,
the definition of L2,1-norm of a matrix A ∈ Rn×m is defined
as follows:

‖A‖2,1 =
n∑

i=1

√√√√
m∑

j=1

a2
ij =

n∑

i=1

∥∥ai
∥∥

2 (2)

where ai denotes the ith row vector of A.

B. Summary of Regularization Regression Methods

The most representative regularization regression method
is the RR [1] and its variations [15], [22], [27]. They can be
concluded by the following optimization problem:

min
f

∑

i

loss( f (xi), yi) + αR( f ) (3)

where loss(·) is a loss function and R( f ) is a regularization
function on f with α as a regularization parameter.

However, the RR can only obtain C projections for feature
extraction. A tractable method for solving this problem is to
give up the usage of the label indicator matrix in the regres-
sion model. Therefore, we obtain the modified regularization
regression model as follows:

min
f ,g

∑

i

∑

j

loss
(

f
(
g
(
xj

))
, xi

) + αR( f ) (4)

where g is another function of the dataset. Previous works such
as [15], [23], and [28] can be concluded in this regression
model.

C. Problem of Previous Regression Methods and
the Motivation of RDR

As indicated in previous research, the high-dimensional
data, such as face images and handwriting digital images, lie
on the ambient low-dimensional manifold embedded in high-
dimensional space [32]–[35]. Thus the local geometric struc-
ture plays an important role in learning the low-dimensional
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subspace. However, no matter the methods summarized in (3)
use or do not use the local geometric structure information,
they are sensitive to the outliers since the L2-norm is used
as the metric. Although more robust norm is used in (4), the
methods concluded in (4) usually ignore the local geomet-
ric structure information, which is very important to improve
the algorithms’ performance [20], [36]–[39]. Therefore, how
to integrate the local geometric structure information into
the regression model and at the same time to improve the
robustness is an important issue.

Previous research [32]–[34] showed that geometric structure
or class-specific structure is very important in dimensionality
reduction. This information can help us find the meaningful
low-dimensional representations and enhance the representa-
tive ability. For example, local linear embedding [33] and the
neighborhood preserving embedding (NPE) [40] can preserve
the local reconstruction relationship among the data. The
Laplacian eigenmaps [34], LPP, and its variations [36]–[39]
can preserve the local nearest neighborhood relationship
among the data points. By introducing the discriminant infor-
mation, the modifications of NPE and LPP learn the low-
dimensional subspace for supervised feature extraction, which
have been proved to have stronger discriminant ability than
the classical LDA in face recognition and objective recogni-
tion [41]. The key idea of these methods is to define a graph
and then preserve the information characterized by the graph
in low-dimensional subspace. We also follow this idea and
introduce the graph in the proposed RDR model.

In order to address the locality preserving problem among
the data points and improve the robustness in feature extrac-
tion, we integrate the local geometric structure into the
regression model and use a robust norm as the main measure-
ment. Therefore, we proposed the novel generalized extension
of the regression model by introducing the locality of the
dataset

min
f ,g

∑

i

∑

j

loss
(

f
(
g
(
xj

))
, xi, Wij

) + αR( f ) (5)

where matrix W characterizes the local manifold structure of
the dataset. The user can use different regularization methods
and append different constraints on the regularized frame-
work (5) to design effective methods. In this paper, we focus
on developing a representative method with orthogonal con-
straint on one of the function f based on the L2,1-norm as the
metric for robustness feature extraction.

III. ROBUST DISCRIMINANT REGRESSION

In this section, the objective function of the proposed
RDR and its formulation are first given. Then we propose
an alternatively iterative algorithm to compute the optimal
solution.

A. Objective Function of RDR and Its Formulation

As indicated in Section II-C, the manifold learning-based
linear dimensionality reduction methods aim to minimize the
weighted L2-norm objective function, in which the objective
function is sensitive to the outliers or the data’s variations.

However, in the proposed RDR, the local geometric structure is
preserved by minimizing the weighted L2,1-norm loss function
to enhance the robustness of the algorithm. From the general-
ized regression model (5), it is supposed that the functions f
and g are linear projections. Then we propose the following
concrete objective function of RDR derived from the gener-
alized extension of the regression model (5) with orthogonal
constraint:

min
P,Q

J(P, Q) = min
P,Q

∑

i

∑

j

∥∥xi − xjQP
∥∥

2Wij + α‖P‖2
F

= min
P,Q

∑

i

∑

j

∥∥xi − xjQP
∥∥

2,1Wij + α‖P‖2
F (6)

s.t. QTQ = I (7)

where P ∈ Rd×m is a matrix and α is the regularization param-
eter. Note that for any row vector x, ‖x‖2 = ‖x‖2,1, it is found
that the significant difference between (6) and other mani-
fold learning-based methods such as LPP and NPE is that (6)
uses the L2,1-norm as the basic metric, in which the element
‖xi −xjQP‖2 is not squared. Previous research [21]–[23] indi-
cated that using the L2,1-norm as the basic metric makes the
outliers with less level of importance than the squared term
||xi−xjQP||22. Minimizing the first term of (6) indicates that the
data xiis expected to be represented by the xjQP and keep the
data similarity or geometric structure defined by W. In other
words, if xi and xj is close to each other, then xi and xjQP
should also be closed to each other under the learned mapping
QP. The regularized term α‖P‖2

F is used for strengthening the
algorithm’s stability in computing the optimal solution and
improving the model’s generalization in feature extraction.

From (6), we have the following formulation using the same
technique proposed in [21]:

J(P, Q) =
∑

i

∑

j

∥∥xi − xjQP
∥∥

2,1Wij + α‖P‖2
F

=
∑

i

∑

j

tr
[
(xi − xjQP)TGijWij

(
xi − xjQP

)]

+ α‖P‖2
F

=
∑

i

∑

j

tr
[
xT

i GijWijxi − 2PTQTxT
i GijWijxj

+ PTQTxT
j GijWijxjQP

]
+ α‖P‖2

F (8)

where

Gij = 1

2
∥∥xi − xjQP

∥∥
2

. (9)

We define

F = G � W (10)

where � denotes the matrix element wise multiplication, and
diagonal matrix D with its diagonal elements is computed as

Dii =
∑

j

Fij. (11)
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With the above notations, we obtain the following formulations
from (8):

min
P,Q

J(P, Q) = min
P,Q

∑

i

∑

j

∥∥xi − xjQP
∥∥

2,1Wij + α‖P‖2
F

= min
P,Q

tr
(
XTDX − 2PTQTXT(G � W)X

+ PTQTXTDXQP + αPTP
)

= min
P,Q

tr
(
XTDX − 2PTQTXTFX

+ PTQTXTDXQP + αPTP
)

s.t. QTQ = I. (12)

Thus, the optimization problem becomes a trace minimization
problem with the orthogonal constraint QTQ = I. In the fol-
lowing section, we will show how to solve the optimization
problem.

B. Optimal Solution

The optimization problem (12) with the orthogonal con-
straint QTQ = I has two variables. To the best of our
knowledge, there has no close form solution. Therefore, we
design an iterative algorithm to compute the optimal solutions.
The algorithm steps to solve the optimization problems are
as follows: first, we fix Q to compute the optimal P, then
fix P to compute the optimal Q. Iterating these two steps
until the convergence of the objective function will give the
optimal solutions of the optimization problem (12). Since in
the iterations we always compute the matrix D using the last
updated P and Q (which are known), tr(XTDX) becomes a con-
stant in (12) at that time and can be ignored in computing
the current optimal solution with respect to variable P and
Q (please see the updating procedures in Table I). Thus the
optimization (12) can be further converted to the following
minimization problem:

min
P,Q

tr
(−2PTQTXTFX + PTQTXTDXQP + αPTP

)

s.t. QTQ = I. (13)

For the given Q, we take the partial deviations of (12) with
respect to P and set it to be 0, it is easy to have

P = (
QTXTDXQ + αId

)−1
QTXTFX

= A−1QTXTFX (14)

where A = QTXTDXQ + αId.
For the optimal Q, we have the following theorem.
Theorem 1: In each iteration, the optimal Q that solves the

optimization problem in (6) and (7) is given by the following
trace maximization problem:

max
QT Q=Id

tr
((

QT(
XTDX + αI

)
Q

)−1
QTXTFXXTFXQ

)
. (15)

Proof: Substituting (14) back to (13), we have the following
optimization problem:

min
QT Q=Id

tr
(
−2XTFTXQA−1QTXTFX

+ XTFTXQA−1QTXTDXQA−1QTXTFX

+ αXTFTXQA−1A−1QTXTFX
)

= min
QT Q=Id

tr
(
−2XTFTXQA−1AA−1QTXTFX

+ XTFTXQA−1QTXTDXQA−1QTXTFX

+ αXTFTXQA−1A−1QTXTFX
)

= min
QT Q=Id

tr
(

XTFTXQA−1(−2A + QTXTDXQ + αId
)

× A−1QTXTFX
)

= min
QT Q=Id

tr
(

XTFTXQA−1(−2A + A)A−1QTXTFX
)

= min
QT Q=Id

−tr
(

XTFTXQA−1QTXTFX
)

= min
QT Q=Id

−tr
(

A−1QTXTFXXTFTXQ
)

= min
QT Q=Id

−tr
((

QT(
XTDX + αI

)
Q

)−1

× QTXTFXXTFTXQ
)

= max
QT Q=Id

tr
((

QT(
XTDX + αI

)
Q

)−1

× QTXTFXXTFTXQ
)
.

This minimization problem is equivalent to the maximum
problem in (15).

The solution of optimization problem (15) can be obtained
by solved by the following eigen decomposition [42]:

(
XTDX + αI

)−1(
XTFXXTFTX

)
q = λq (16)

where λ is the eigenvalue corresponding to eigenvector q. The
first d eigenvectors corresponding to the larger eigenvalues are
the optimal solutions for variable Q, which is used for feature
extraction. However, since the matrix G in F = G � W is
related to the unknown Q and P, the optimization problem
cannot be directly solved. Therefore, we present the details of
the iterative method, which is shown in Table I, to obtain the
optimal solutions of the proposed model.

IV. ALGORITHM ANALYSIS AND COMPARISON

In this section, we first present the theoretical analysis on the
algorithm’s convergence. Then the computational complexity
is also presented. At last, detailed comparisons between the
proposed method and the other most related classical methods
are reported.

A. Convergence Analysis

Since the proposed algorithm is an iterative method, we
need to prove the convergence of the algorithm. First, we need
the following lemma [21].

Lemma 1: For any nonzero vector a and b, the following
inequality holds:

‖a‖ − ‖a‖2

2‖b‖ ≤ ‖b‖ − ‖b‖2

2‖b‖ . (17)

From Lemma 1, it is easy to obtain the following corollary.
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TABLE I
RDR ALGORITHM

Corollary 1: For any nonzero vectors ai
j, bi

j(i, j =
1, 2, . . . , N), the following inequality holds:

∑

i

∑

j

∥∥∥ai
j

∥∥∥ −
∥∥∥ai

j

∥∥∥
2

2
∥∥∥bi

j

∥∥∥
≤

∑

i

∑

j

∥∥∥bi
j

∥∥∥ −
∥∥∥bi

j

∥∥∥
2

2
∥∥∥bi

j

∥∥∥
. (18)

Suppose in the tth iteration, we have the following new
notation from (13):

J(Pt, Qt, Gt)

= tr
(−2PT

t QT
t XTFtX + PT

t QT
t XTDtXQtPt + αPT

t Pt
)

where Gt is the intrinsic variable related to Ft and Dt. With
above preparations, the following theorem can be obtained.

Theorem 2: The iterative scheme in Algorithm 1 monoton-
ically decreases the objective function value of J(Pt, Qt, Gt)

in each iteration.
Proof: When Qt and Gt are given, we know that Pt+1 =

A−1
t QT

t XTDtXQt +αId minimizes the objective function value
J(Pt, Qt, Gt). Thus we have

J(Pt+1, Qt, Gt) ≤ J(Pt, Qt, Gt). (19)

On the other hand, since solving the eigenfunction provides
the optimal solution, the objective function value is further
reduced. Thus we obtain

J(Pt+1, Qt+1, Gt) ≤ J(Pt, Qt, Gt). (20)

At last, we need to prove that

J(Pt+1, Qt+1, Gt+1) ≤ J(Pt, Qt, Gt). (21)

Since
∑

i

∑

j

tr
[(

xi − xjQt+1Pt+1
)T

Gt,ijWij
(
xi − xjQt+1Pt+1

)]

+ α‖Pt+1‖2
F

≤
∑

i

∑

j

tr
[(

xi − xjQtPt
)T

Gt,ijWij
(
xi − xjQtPt

)]

+ α‖Pt‖2
F. (22)

That is

∑

i

∑

j

∥∥√
Wij

(
xi − xjQt+1Pt+1

)∥∥2
2

2
∥∥√

Wij
(
xi − xjQtPt

)∥∥2
2

+ α‖Pt+1‖2
F

≤
∑

i

∑

j

∥∥√
Wij

(
xi − xjQtPt

)∥∥2
2

2
∥∥√

Wij
(
xi − xjQtPt

)∥∥2
2

+ α‖Pt‖2
F. (23)

From Corollary 1, we have
∑

i

∑

j

∥∥√
Wij

(
xi − xjQt+1Pt+1

)∥∥
2

−
∥∥√

Wij
(
xi − xjQt+1Pt+1

)∥∥2
2

2
∥∥√

Wij
(
xi − xjQtPt

)∥∥2
2

≤
∑

i

∑

j

∥∥√
Wij

(
xi − xjQtPt

)∥∥2
2

−
∥∥√

Wij
(
xi − xjQtPt

)∥∥2
2

2
∥∥√

Wij
(
xi − xjQtPt

)∥∥2
2

. (24)

Combining (23) and (24), we obtain
∑

i

∑

j

∥∥√
Wij

(
xi − xjQt+1Pt+1

)∥∥
2,1 + α‖Pt+1‖2

F

≤
∑

i

∑

j

∥∥√
Wij

(
xi − xjQtPt

)∥∥
2,1 + α‖Pt‖2

F. (25)

This indicates that
∑

i

∑

j

tr
[(

xi − xjQt+1Pt+1
)T

Gt+1,ijWij
(
xi − xjQt+1Pt+1

)]

+ α‖Pt+1‖2
F

≤
∑

i

∑

j

tr
[(

xi − xjQtPt
)T

Gt,ijWij
(
xi − xjQtPt

)]

+ α‖Pt‖2
F. (26)

Equation (26) indicates that (21) is satisfied. From (19)–(21),
we conclude that the iterative algorithm converges.

B. Computational Complexity

We can find that the main computational complexity comes
from two parts. The first part is the eigen decomposition
of (16), which needs O(m3). If the algorithm converges
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within T iteration steps, the total computational complexity
is O(Tm3), which is very large when the dimension of the
samples is very high. The second part is to compute the scat-
ter matrices XTDX+αI and XTFXXTFX in the iteration of the
RDR algorithm, which is up to O(mN2) in single iteration and
the algorithm will cost a little more time. Thus, in this case,
PCA could be used for predimensionality reduction, which
will greatly reduce the computational burden. As shown in
the experimental section, the algorithm converges very fast
such that the total computational burden is acceptable in the
learning procedure. In addition, since the algorithm can be run
offline in learning, the additional computational cost is not
considered as a distinct disadvantage of the proposed method
in feature extraction and pattern recognition task.

C. Properties of RDR and Its Connections to
Other Methods

In this section, we indicate some properties/advantages of
RDR and show the relations between RDR and the related
methods.

One can define the graph W in different modes using class
information. In this section, we analyze the properties of the
graph which is defined as follows:

Wij =
{

1/Nc, if xi and xj belong to the cth class
0, otherwise

(27)

where Nc denotes the number of the training samples in cth
class. With this graph, due to the high dimensionality of the
original data X, most of the linear dimensionality reduction
methods can obtain rank(XTWX) = rank(W) = C projections
at most. However, in this case we have the following property
which is different from previous methods.

Proposition 1: The number of the optimal projection of
RDR is at least C. The upper bound of the number of the
optimal projection for RDR is N.

Proof: Since rank(W) = C and G is usually a random sym-
metric matrix, which is the full-rank matrix without loss of
generality, we have

rank
(
XTFXXTFX

) = rank(F) = rank(G � W)

≤ min{rank(G)} = N.

On the other hand, we have

rank(G � W) ≥ rank(W) = C.

The “=” satisfies if and only if all the data points in
the same class are distributed on a spherical surface and the
mapping QP maps them to the corresponding centers of the
spheres.

Proposition 1 indicates that the proposed regression method
at least has C projections for feature extraction. In other
words, the number of projections obtained by RDR algorithm
exceeds the classical RR and its L2,1-norm-based RFS [21],
as well as the class LDA. Using the same graph as defined
in (27), LPP can only obtain rank(W) projections in high-
dimensional small sample size problem. However, the RDR
can learn more projections than LPP in this case, which can
be derived by Proposition 1. This is another advantage of

RDR. The RDR also has the similar function that can preserve
a certain geometric structure related to the graph W. From
equation (XTDX + αI)−1(XTFXXTFX)q = λq, we can define
a new graph or neighborhood matrix as follows:

W̃ = FXXTF = [(G � W)X][(G � W)X]T . (28)

This graph is not only related to the geometric structure
of the predefined graph W, but also related to the weights
in G derived by the L2,1-norm, as well as the data matrix
itself. Therefore, RDR optimally preserves a novel geometric
structure characterized by W̃.

We can also find that RDR is the reweighted version of
LDA, in which the weights are derived by the L2,1-norm. The
robustness comes from the different weights defined in W̃,
in which the weight matrix G robustly measures the distance
of different data points. Thus RDR can perform better than
LDA in feature extraction on noisy data.

D. Model Analysis and Comparison

In this section, we compare the proposed model with the
following similar models on their performance in feature
extraction and classification:

min
Q

∑

i

∑

j

∥∥xiQ − xjQ
∥∥

2Wij s.t. QTQ = I (29)

and

min
P,Q

∑

i

∑

j

∥∥xi − xjQP
∥∥2

2Wij + α‖P‖2
F s.t. QTQ = I. (30)

It is easy to find that all of RDR, (29) and (30) aims to
preserve the locality defined by W. However, the proposed
model (6) is essentially different from models (29) and (30).
Model (29) only aims to preserve the geometric structure
defined by W using the L2,1-norm loss function. Model (30)
is very similar to (6) but using L2-norm loss function, which
is sensitive to the outliers. The optimal solution of model (29)
can be obtained by iteratively solving the following eigen
decomposition:

XT(H � W)XQ = Q� (31)

where Hij = 1/‖xiQ − xjQ‖2 and � is the eigenvalue matrix.
Similar to (6), model (30) can also be solved using the

iterative algorithm. The optimal solution

P = (
QTXTDXQ + αId

)−1
QTXTWX. (32)

The optimal Q can be obtained from the following
eigenfunction:

(
XTDX + αI

)−1(
XTWXXTWX

)
Q = Q�. (33)

Comparing (32) and (33) with (14) and (15), we can find
that the L2-norm model lost the weight matrix generated by
the L2,1-norm loss function. Therefore, the proposed model (6)
will be more robust than (30).

Fig. 1 shows the performance of PCA, LPP, RDR and
model (29) and (30) on FERET face database with block
noise. From Fig. 1, we can see that RDR performs signifi-
cantly better than model (30), which indicates that using the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LAI et al.: RDR FOR FEATURE EXTRACTION 7

Fig. 1. Performance of different models/methods on FERET face database
with 15×15 block noise (the details of the database can be found in
Section V-A).

L2,1-norm as the distance measurement for the reconstructive
term xi−xjQP usually performs better than using the L2-norm.
The only reason is that different norms are used in the mod-
els. Thus L2,1-norm used in the proposed model improves the
robustness. Usually, if one model can integrate the reconstruc-
tive and discriminant properties together, it will perform better
than the ones only using the reconstructive information. Since
PCA only uses the reconstructive information, as shown in
Fig. 1, it performs poorly in this case. Moreover, even if the
discriminant information is used in model (29), the experimen-
tal results presented in Fig. 1 shows that RDR still performs
significantly better than (29). This indicates that the recon-
struction operation P can improve the model generalization in
feature extraction to a certain extent.

V. EXPERIMENTS

Experimental results on six databases will be presented
in this section. The code of the proposed RDR can be
downloaded from http://www.scholat.com/laizhihui.

A. Details of the Databases

The FERET face database [44] includes 1400 images of
200 individuals (each individual has seven images) with vari-
ations in facial expression, illumination, and pose. The images
were randomly added with a block with size 5 × 5, 10 × 10,
and 15 × 15. Some sample images of one person are shown
in Fig. 2(a).

A subset (C29) of the CMU PIE face database [43] con-
taining 1632 images of 68 individuals was used in the
experiment. The images were randomly added with the salt
and pepper noise with density as 0.03. Fig. 2(b) shows
the sample images from this database with different noise
densities.

A subset of the AR face database [44] containing
2400 images from 120 individuals were selected and used
in our experiments. The pixel values were normalized on
0–255 and no any other preprocessing was performed on

the images. The sample images of one person are shown in
Fig. 2(c).

PolyU hyperspectral face database [45] (http://www.
comp.polyu.edu.hk/∼biometrics/hyper_face.htm) is used to
test the robustness of the proposed algorithms to the varia-
tions of the different hyperspectral images. Fig. 2(d) shows
some examples of images of the hyperspectral face. In the
experiment, 30 images of 47 individuals (1410 image in total)
were used.

Binary alpha digits image database (http://www.cs.
nyu.edu/∼roweis/data.html) is composed of 1404 binary
images of handwritten digits. The resolution of each image
is 20×16 pixels and the pixel value is 0 or 1. Some sample
images are shown in Fig. 2(e).

PolyU FKP (http://www.comp.polyu.edu.hk/∼biometrics/
FKP.htm) contains 7920 images from 660 different fingers.
The pixel value of the image was normalized to be 0–255.
The sample images are shown in Fig. 2(f).

B. Experimental Setup

In the experiments, L images of each individual were ran-
domly selected and used as the training set and the rest for test.
We set L = 3, 4, 5 for CMU PIE face database and L = 5 for
FERET, AR, and PolyU hyperspectral face databases, respec-
tively. For binary alpha digits image and PolyU FKP databases,
we set L = 20 and L = 2, 4, respectively.

In the experiments, the proposed method was compared with
the L2 norm-based methods, i.e., PCA, LDA, LPP, RR, and the
L2,1-norm-based methods, i.e., RFS [21], FSSL [27], semantic
analysis via intermediate representation (SAIR) [23], and the
recently proposed discriminant elastic-net regularized linear
regression (DENLR) [7].

To improve the computational efficiency and avoid the sin-
gularity problem, PCA is used as preprocessing method and
keep about 98% energy. The subspace dimensions for FERET
and AR face databases were varied from 5 to 200 with step 5.
For CMU PIE and PolyU hyperspectral face database and
FKP database, the numbers of the subspace dimensions were
varied from 2 to 150 with step 2. For the binary alpha dig-
its image dataset, the subspace dimensions were varied
from 1 to 50.

The neighborhood parameters K were selected from the
set {1, 2, . . . , L − 1} since the supervised graph was used
in the experiments and K ≤ L − 1, and the graph used in
the experiments (in LPP, FSSL, and RDR algorithm) was
defined as

Wij =
{

1, if xi ∈ NK
(
xj

)
or xj ∈ NK(xi)

0, otherwise

where xi ∈ NK(xj) means that xi is one of the K near-
est neighbors of xj in the same class. The regularization
parameter of all the regression methods were selected from
[0.001, 0.01, . . . , 1000].

Tables II–VII show the performances of the algorithms run-
ning for ten times. The recognition rates versus the number
of the training images or the size of the block occlusions are
also shown in Fig. 3.

http://www.scholat.com/laizhihui
http://www.comp.polyu.edu.hk/~biometrics/hyper_face.htm
http://www.comp.polyu.edu.hk/~biometrics/hyper_face.htm
http://www.cs. nyu.edu/~roweis/data.html
http://www.cs. nyu.edu/~roweis/data.html
http://www.comp.polyu.edu.hk/~biometrics/FKP.htm
http://www.comp.polyu.edu.hk/~biometrics/FKP.htm
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Fig. 2. Image samples used in the experiments. (a) CMU PIE face database. (b) FERET face database. (c) AR face database. (d) PolyU hyperspectral face
database. (e) Binary alpha digits image database. (f) PolyU FKP image database.

(a) (b)

Fig. 3. (a) Average recognition rates (%) versus the variations of the training size on CMU PIE face database. (b) Recognition rate (%) versus the size of
occlusion on the FERET face database.

Moreover, we also computed the training time (in seconds)
of all the methods on the databases used in the experiments.
All the experiments were run on a workstation (CPU: Intel
Xeon, 2.53 GHz; RAM: 8 GB; 64-bit operation system).

C. Experimental Result and Analysis

From the experiments, we can obtain some
interesting observations and the conclusions from
Tables II–VII.
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TABLE II
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION,

DIMENSION AND TRAINING TIME] OF DIFFERENT ALGORITHMS ON CMU PIE DATASET

TABLE III
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION,

DIMENSION AND TRAINING TIME] OF DIFFERENT ALGORITHMS ON FERET DATASET

TABLE IV
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION,

DIMENSION AND TRAINING TIME] OF DIFFERENT ALGORITHMS ON AR DATASET

TABLE V
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), STANDARD DEVIATION, DIMENSION

AND TRAINING TIME] OF DIFFERENT ALGORITHMS ON HYPERSPECTRAL FACE DATABASE

TABLE VI
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), TRAINING TIME, DIMENSION]

OF DIFFERENT ALGORITHMS ON POLYU FKP DATASET

TABLE VII
COMPARISON OF THE PERFORMANCE [RECOGNITION ACCURACY (%), TRAINING TIME, DIMENSION]

OF DIFFERENT ALGORITHMS ON BINARY ALPHA DIGITS IMAGE DATASET

1) When there are strong noises, for the regression meth-
ods, L2,1 norm-based RFS usually performs better than
the L2 norm-based RR, which can be found on CMU
PIE, FERET, and AR databases. RFS and FSSL perform
better than the L2 norm-based LDA and LPP. Among
these methods, RDR achieves the best performance.
This indicates that L2,1 norm-based methods is more

robust than the L2 norm-based methods when the image
contains salt and pepper noises.

2) When there is increasing number of occlusion size on
the image, the recognition rates of all methods are
decreased. However, the L2,1 norm-based methods, i.e.,
RDR, FSSL, and RFS, also perform better than the
L2 norm-based methods. In this case, compared with
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TABLE VIII
COMPARISON OF THE PERFORMANCE (IN AVERAGE RANK) OF DIFFERENT ALGORITHMS ON DIFFERENT DATABASES

TABLE IX
STATISTICAL SIGNIFICANCE TEST OF RDR AGAINST OTHER METHODS

other L2,1 norm-based methods, SAIR achieves lower
recognition rates. The reason maybe that directly using
the label indicator matrix for regression without sparse
regularization term or the local geometric structure in
regression is not robust to the occlusions or the vari-
ations of hyperspectral images. The other reason may
be that the SAIR can only obtain C projection for fea-
ture extraction, which is not enough for achieving high
recognition rate in recognition tasks.

3) FSSL can also obtain higher recognition rates on dif-
ferent cases in the experiments due to the fact that it
integrates the local geometric structure and sparse fea-
ture selection together. However, RDR still performs
better than FSSL. The possible reason is that the L2 norm
is still a main distance metric in FSSL’s regression steps,
which are sensitive to the block occlusions or image’s
significant variations. For FSSL and RFS, the feature
selection (L2,1 norm regularization term for sparse fea-
ture selection) plays an important role in obtaining the
high recognition rates.

4) Despite of comparing with the classical methods (i.e.,
PCA, LDA, LPP, and RR) and the most related meth-
ods (i.e., RFS, FSSL, and SAIR), the proposed method
is also compared with the most recently proposed meth-
ods DENLR [7]. We find that RDR performs better than
the recently proposed DENLR in most cases. This indi-
cates that using the L2 norm in the loss function with
nuclear norm regularization cannot obtain the better per-
formances than RDR, in which the L2,1 norm is used as
the measurement for the loss function.

D. Statistical Significance Test

After all experimental results are obtained, we also com-
pute the statistical significance of the proposed RDR against
the compared methods using the nonparametric test [46]. We
first compute the average rankings of each method on different

datasets (shown on Table VIII), and then Friedman tests
followed by Holm tests are performed.

From the average rankings we obtain the statistic value
FF = 3.187. With eight algorithms and six datasets, FF is
distributed according to the F distribution with 6 − 1 = 5
and (6 − 1) × (9 − 1) = 40 degrees of freedom. The criti-
cal value of F(5, 40) for α = 0.05 is 2.45, which is smaller
than 3.187. Therefore, we reject the null-hypothesis and the
Friedman test shows that the performance differences between
these algorithms have statistical significance.

Holm test is used as post-hoc test for the
Friedman test. We first compute the value z =
(Ri − RRDR)/

√
Nmethod(Nmethod + 1)/6Ndata, where RRDR

and Ri denote the total average ranks of RDR and the ith
method listed in Table IX, Nmethod(= 9) and Ndata(= 6)

denotes the number of methods and databases. Then zs are
used to find the corresponding probability from the table of
normal distribution to compute the significant p values of
these methods. Holm’s step-down procedures are used to
evaluate the significance. As can be seem from Table IX,
there is significance for RDR against PCA, RR, LDA, and
LPP since 0.0058 is smaller than 0.0100. However, the
significance for RDR against RFS, FSSL, SAIR, and DENLR
is not detected since 0.0184 is larger than 0.0125.

E. Parameters Sensitivity Study

In the proposed RDR method, there are three key parame-
ters, namely the parameter d, i.e., the number of dimension, the
neighborhood size K, and the α. From Fig. 4(a) and (b), one
can find that parameter K influences the effectiveness of the
algorithm on different databases to certain extent. One com-
mon phenomenon we find in the experiments is that when
K = 2 the algorithm performs the best in most cases in
different databases. We show the cases on FERET and PIE
CMU face databases as two examples in Fig. 4(a) and (b),
respectively.
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(a) (b) (c)

Fig. 4. Recognition rates versus the neighborhood size on (a) FERET and (b) CMU PIE face databases and (c) regularized parameter of RDR.

(a) (b)

Fig. 5. Recognition rate versus the dimension of the initialized subspace of RDR on (a) CMU PIE and (b) AR face databases.

(a) (b)

Fig. 6. Convergence on (a) FERET and (b) AR face databases.

The second parameter is the dimension d in RDR. This
paper indicates that when d is close to C (the number of
class) or slightly larger than C, RDR always achieves its best
performance. Furthermore, when a larger d(d 
 C) used in
RDR, there is no significant effect on the recognition rate.
Fig. 5 shows the recognition rate versus the variations of

the dimension on CMU PIE and AR face databases. It can
be found from Fig. 5(a) that when the initialized subspace
dimension d is 40 (or larger than 40), RDR achieves its best
performance. Using a larger d(d 
 C) in RDR cannot obtain
higher recognition rate. Similar case can also be found on AR
face database. Usually, in order to guarantee that RDR can
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achieve its best performance, the dimension of the initialized
subspace dimension should be slightly larger than the num-
ber of class (this case happens on PolyU hyperspecial face
database).

The third one is the regularization parameter α. Usually, the
recognition rate of RDR is very robust to α in a big range.
When α ∈ [10, 1000], RDR can achieve its best performance.
In Fig. 4(c), we show an example of the recognition rate ver-
sus the value α on AR face database. Usually, the proposed
method will not achieve its best performance when α = 0,
which indicates that the regularized term of RDR can improve
the discriminative ability and model generalization in fea-
ture extraction. Similar property can also be found on other
databases.

F. Convergence Study

In Section IV-A, it is proven that the objective function
of RDR will converge to the local optimum. In fact, we
find that the proposed RDR converges very fast. Generally,
the proposed RDR can converge within 3–10 iterations.
Fig. 6 shows the convergence curves of RDR with respect
to the value of the objective function. Fig. 6(a) and (b) shows
the convergent properties of the RDR on FERET and AR face
databases, respectively.

VI. CONCLUSION

In this paper, we present a generalized regression model
and propose a novel linear dimensionality reduction method
called RDR. RDR uses the robust L2,1 norm as the basic met-
ric in the objective function. Since the optimization problem
of RDR has no closed form solution, we design an iterative
algorithm to compute the optimal solution. It is shown that the
optimal projection matrix can be obtained by solving a series
of eigenfunctions in the iteration. Comprehensive analyses,
including the convergence, computation complexity, and the
similarity and difference between the proposed RDR and the
classic methods, are presented. The robustness of the RDR is
tested on some well-known image databases, in which there
are different noises or occlusions. Compared with the L2,1
norm-based FSSL methods, the potential disadvantage of the
proposed RDR is that it cannot obtain the sparse projections
for feature selection. One tractable method that might fur-
ther increase the recognition rates of RDR is to introduce
the sparsity in the projections, which will be explored in the
future since directly solving the eigenfunction cannot obtain
the sparse solutions (or sparse eigenvectors). Thus, we will
continue to develop the robust sparse subspace learning meth-
ods based on the L2,1 norm as the basic metric instead of only
using it as the regularization term as in previous works.
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